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1. Fourier Series 10 Lectures

(a) Periodic functions. Orthogonality of sine and cosine
functions, Dirichlet Conditions (Statement only).
Expansion of periodic functions in a series of sine and
cosine functions and determination of Fourier coefficients.
Complex representation of Fourier series. Expansion of
functions with arbitrary period. Expansion of non-periodic
functions over an interval. Even and odd functions and
their Fourier expansions. Applications. Summing of Infinite
Series. Term-by-Term differentiation and integration of
Fourier Series. Parseval Identity.







Fourier Series

http://www.gap-system.org ~history PictDisplay/ Fourier html

“In 1822, Joseph Fourier, a French
mathematician, discovered that
sinusoidal waves can be used as simple
building blocks to describe and
approximate any periodic waveform
including square waves. Fourier used it
as an analytical tool in the study of
waves and heat flow. It is frequently

Joseph Fourier 2 - :
1768-1830 used in signal processing and the

statistical analysis of time series.”

http://en.wikipedia.org/wiki/Sine wave




Introduction to Fourier Series

e It is named after French mathematician and
physicist ‘Jacques Fourier’ (1768-1830)’

e A series expansion of a function in terms of
trigonometric functions cos mx and sin nx is called
Fourier series.

e Many functions including some discontinuous
periodic functions can be written in a Fourier series

e It has wide applications in solving some
ordinary and partial differential equations.



The set of functions

{1 cosLX coszLx sinw—x sin27r—x }
: R g R 5

is orthogonal in [/, /] since

14 14
o} / cos mdx=/ sin mdx:O.
_¢ / _¢ 14

/‘Z mrx  nmwx 0 ifm#n,
Q COS —— C0S —adx = :
_¢ / 14 ¢ ifm=n.



Mathematical expression

/‘ . mnX . nwx 0 if m+#n,
Q sin sin gx = _
_¢ ¢ 4 ¢ iftm=n.

¢

mnrx . nmx

Q / cosTSIanx= 0, Vm, n.
—L



Expansion of periodic function in Fourier series

Now, let f(x) be a periodic function of period 2¢ defined on [/, ¢]. Assume that it
can be expressed as a linear combination of trigonometric functions cos mx and

sinnx. That is,
o e TN o T ek
f(x) = [2 + ) apcos ; + ) bysin ; ] (1)
n=1 n=1
Integrate (1) both sides from —/ to ¢, we have

1 14
ap = —/ f(x)dx.
L J ¢




Fourier coefficients

Now, multiply (1) by cos ? and then integrate from —¢ to ¢, we obtain
/ f(x) cos %xdx, n=12.3,..
Similarly, multiply (1) by sin 7 and then integrate from —/¢ to ¢, we get

14
_1/ f(x)sin "X dx, n=1,2,3, ...
¢/, ¢

These formulae of ag, a, and b,, above are called Euler’s formulae.




Problem 1

Find the Fourier series expansion of the following periodic function of period 27

T+Xx If —m<x<0,
f(x) = .
0 it < X< 7.




Problem 2

@ Find a Fourier series to represent x — x? from x = —wto x =,
f(x + 2m) = f(x).

Hence deduce that
1 B 1 5 1 B 1 L 7r_2
12 22 " 32 42 "7 12




Convergence of Fourier Series for continuous functions

If a periodic function f(x) with period 2¢ is continuous in [—/, /] and has continuous
first and second derivatives at each point in that interval, then the Fourier series

- nmx  ~— . nmx
[—2—+,§ancos—%—+§bnsm%],

of f(x) is convergent.




Formula

The Fourier coefficients ag, a, and b, are given by

1 /
= — / f(x)dx,
05 ¢

nmx

¢
an = %/ f(x)cos—dx

/ f(x) sin ﬂdx




Calculation

Now, ,
— 1/ f(x)cos mr—xdx

1 sm(mrx)/E / nmx
:Z[(f( ) ()¢ —e / f(x)sm—dx

[ nm
= ef(x)sm de [since sin nt = 0].




Calculation

After integration by parts again, we get

an = _nlw [( — f'(x) co?l(vzv)r;(e)/f): + ni;r /_2 f"(x) cos ?dx]

The first term on the right side is zero because of periodicity and continuity of
f'(x). Since f”’(x) is continuous in the interval [/, /], therefore

If"(x)| < M

: nmx
for an appropriate constant M. Also, |cos %| =




Calculation

Therefore,

/ & nmx
lan| = n27r2‘/_gf (x) cos de

/ £
Md
n27T2I/_£ X

_2Me?
- nPx2

<

Similarly,
2M 2

nm2

|bn| <




Final result

Hence, the absolute value of each term of the Fourier series of f(x) is at most
equal to

AMR1 1 1
1] + — [12+22+32+“']

which is convergent. Hence that Fourier series converges and the proof is
complete.




Piecewise continuous function

A function f is said to be piecewise continuous in [/, /] if

@ f(x) is defined and continuous in V x € [/, /] except at finite number of points
in [—2,7].
@ At a point xo € (—¢, ¢), if function is not continuous, then lim f(x) and
x—>x0“

lim f(x) exist and are finite.
X=Xy

@ At the end point of the interval, lim f(x)and lim f(x) existand are finite.
X——L+ X——£0—




Convergence of Fourier series for piecewise continuous function

A function f(x) can be expressed as a Fourier series

[ +Zancos— +Zb,,sm mrx]

in the interval [/, /] (where ag, a, and b, are constants) provided
@ f(x) is periodic (with period 2¢), single valued and finite,
@ f(x) is piecewise continuous in [/, /],

@ f(x) has left hand derivative and right hand derivative at each point in the
interval.




Theorem

Let f(x) and f'(x) be piecewise continuous functions on the interval [/, ¢]. Then
the Fourier series of f(x) converges to f(x) at the point of continuity. At the point o
discontinuity, say xo € (—¢, ¢), the Fourier series converges to

210G + 0x5)

where f(x;") and f(x; ) are the right and the left hand limits of f(x) at xo.
At both the end points of the interval [/, /], the Fourier series converges to

1
SUF(—+) + £(0-)]




Problem 3

Find the Fourier series expansion of the following function

o f(x)= -7 f —a<x<0,
] x ifo < x <.

Hencededucethatl+l+l+ _”_2
ptxatet-=73




Problem 4

Find the Fourier series expansion of the following function

(1 if —r<t<—7/2,
@ f(x)=<¢0 if —w/2<t<7/2,
1 ifr/2 <t<m.

\

Hence determine the value of




Even and odd function

A function f is said to be
@ an even function if f(—x) = f(x).
@ an odd function if f(—x) = —f(x).
For example,
f(x) = |x|, x2, e, cos x efc.

are even functions and
g(x) = x>, x, sinx, —cos x efc.

are odd functions.




Properties of even and odd function

We know that if f(x) is an even function, then

/_i f(x)dx = 2/: f(x)dx.

And, if f(x) is an odd function, then

/_i fixjax =0.




Fourier series of even function

The Fourier series expansion for an even periodic function f(x) in an interval
[—¢. 7] is given as

o0
- @ nmXx
fx)= + ) ancos (_Z )
n=1
where , ,
2 2 nmx
ay = Z/o f(x)dx and a, = Z/o f(x)cos (T)dx,

n=12 3"




The Fourier series expansion for an odd periodic function f(x) in an interval [—¢, ¢]

is given as
f(x) = Z by sin (mEX)
where , e
> /0 f(x) sin (—
n=12.3 -




Problem 5

Given,

—x+1 if -7 <x<0,
f(x) = .
X+ 1 if0 < x <,

with f(x + 27) = f(x).
@ Is the function even or odd?
@ Find the Fourier series for f(x) and hence determine the value of

1 1 1
1—2+¥+§+...




Problem 6

Find the Fourier series expansion of the periodic function f(x)

—k if —m<x<0,
f(x) = .
k IEDi<X < i

with f(x + 27) = f(x).
(_1)n+1 B E
2n—1 4

@ Deduce that Z

n=1




Problem 7

Find the Fourier series expansion of the following function

@ f(x)=4—x% -2 < x <2, with f(x + 4) = f(x).




Fourier half range series

Half range series plays an important role in several engineering and physical
applications where it is required to get the Fourier series expansion of a function in
an interval (0, ¢), ¢ is the half of the period.

Now, it is possible to extend f(x) to the other half [—¢, 0] of [—¢, ¢], so that f(x) is
either an even or an odd function. In the first case, it is called an even periodic
extension of f(x), while in the second case, it is called an odd periodic extension

of f(x).




Continued......

@ If we do an even periodic extension of f(x), then f(x) is an even function in
[—¢, ¢]. Therefore, f(x) has a Fourier cosine series.

@ If we do an odd periodic extension of f(x), then f(x) is an odd function in
[—¢, ¢]. Therefore, f(x) has a Fourier sine series.

If a function is defined on a half interval [0, ], then we can obtain a Fourier cosine
or a Fourier sine series expansion, by suitable periodic extensions, depending on
the problem.




Fourier sine series

The Fourier sine series expansion of a piecewise continuous function f(x) on the
half-range interval [0, ¢] is given as

f(x) = i by sin ("Lex)

n=1

where ,
2 . (nmXx
bn = Z/o f(x)sin (T)dx




Fourier cosine series

The Fourier cosine series expansion of a piecewise continuous function f(x) on
the half-range interval [0, ¢] is given as

f(x)= ?o i cos( )

where

2 ¢ 2 ¢ nmwX
Z/o f(x)dx and a, = Z/o f(x) cos (T)dx




Problem 8

Obtain cosine and sine series for f(x) = x in the interval 0 < x < .

Hence show that




Problem 9

Expand
1—x H0<x<1,
f(x) = 4 3 2
X_Z ﬁ§<x<t

as a Fourier sine series.




Problem 10

Find the Fourier expansion of x sin x as a cosine series in (0, 7).

Hence show that
1 1 T2

13 35 57 4




Parseval’s identity

The Parseval’s identity is given as

[ (e = {1+ (o),
N n=1

provided the Fourier series for f(x) converges uniformly in (—Z, 7).




Corollary 1

If the half-range cosine series for the function f(x) in (0, ¢) is
1) = 2 43 aycos (57)
2 e 14
then the Parseval’s formula is given as

/oe(f(x))zdx = g(? + & + @ + a8 + oo)




If the half-range sine series for the function f(x) in (0,¢) is

f(x) = Zb,,s in (mrX)

then the Parseval’'s formula is given as

/0 e(f(x))"’dx = g(bf + b5 + b5 + ...00)




The root mean square (rms) value of the function f(x) in an interval (a, b) is

defined by

b—a

b
[ / [f(x)l?-dx]

[F(X)]rms = \

It is also known as the effective value of the function.

It has applications in the theory of mechanical vibrations and in electric circuit
theory.




Problem 10

Apply Parseval’s identity to the function
f(x)=x, —7m < x <, f(x+2r) = f(x),
and hence deduce that

1 1 1 1 2

12+22+32+...+? 6




Problem 11

Using Parseval’s identity to the function
f(x) =x2, —v < x <=, f(x+2r) = f(x),

show that
1 . 1 . 1 . 1 o _7r4
14 24 34 ' 44 T 90




Problem 12

For the function, f(x) = x + x2, —w < x <, f(x + 27) = f(x), apply Parseval’s
identity to evaluate the value of

> (+ 7o)

—1




Complex form of Fourier Series

The Fourier series of a periodic function f(x) of period 2¢, is

f(x) = [%Jr;ancos? +;bnsin?], (1)

This can be expressed in complex form, which sometimes makes calculations
easier in the problems.




Continued....

We know, ] ,
im0/t — cos X 4 jsin 17X
¢ ¢
and
e‘i(”"x)/‘ — COS % — jsin m
¢ 4
Adding and subtracting the above expressions, we obtain
cos 17X 1(ei(n7rX)/€ + g—ilnmx)/t)
' 2
o8 T 1 i(nmx)/€ —i(nmx) /e




Continued...

Using the fact that 1/i = —/, we have

nmx Worggr i(nwx)/¢ | o—i(nmx)/¢ 1 i(nwx)/€ _ o—i(nmx)/e
anc037+bnsm7_§an(e +e )+§bn(e e )
- %(an — by )elnRlie %(an + by e VImR)e
- Cnei(nvrx)/e . c_ne—i(mrx)/e, (2)

where 1 1
Cn - E(an — ibn) and C_n — E(an + ibn).




Continued...

Inserting % = Cp, and using the expression (2) in (1), we obtain
e . .
f(X) —Co + Z(Cnel(mrx)/e i C_ne—l(mrx)/E)‘ (3)

n=1

If f is real, then ¢, = c_,,.




Continued

From the Euler’s formula, we have

/ f(x)dx.
= —(a,, — ibp) = 1 / f(x)(cos# — isin #)dx

. 1 ; —i(nmx)/¢
=" [_ e f(x)e ax

1 [ nmx . . NnX
c_,,_2(a,,+lb,,) 28/ f(x)(cosT+lsm7)dx

- i(nmx)/¢
57 /_e f(x)e' dx




Continued

The expression (3) can be written as

f(X)= Z cnei(mrx)/e’

nN=—o0o

where .
— 1 —i(nmx)/t
Cn = 57 /_ef(x)e ax

This is called the complex form of the Fourier series, or, the complex Fourier
series of f(x).




Problem

Find the complex form of the Fourier series of the following functions

@ f(x)=eXin—m < x<m, f(X+2r) = f(x).

o | i~ ST =r <Xt O,
TR < x <4,

f(x + 2r) = f(x).




The Dirichlet Conditions
o«
f(t) = ay+ 2;1(an cosnat + by sinnot)

—

Af{t)
1

2L 13 Lyt 1 1 as2ets2la
21 ?11 47 f=3=5 O 2nf > 2
1) (1) must be single valued everywhere
2) f(t) must have a finite number of discontinuities
(must be finite) in one period
3) f(t) finite numbers of maxima and minima

4) the integral over AT
one period < oo J/o|l(t)|dt <oo (allt)




4. Integrals Transforms 10 Lectures
Fourier Transforms: Fourier Integral theorem. Fourier
Transform. Examples. Fourier transform of
trigonometric, Gaussian, finite wave train & other
functions. Representation of Dirac delta function as a
Fourier Integral. Fourier transform of derivatives, Inverse
Fourier transform, Properties of Fourier transforms
(translation, change of scale, complex conjugation, etc.).
Three dimensional Fourier transforms with examples.
Application of Fourier Transforms to differential
equations: One dimensional Wave and Diffusion/Heat
Flow Equations




